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Abstract

Head tracking is an important primitive for smart
environments and perceptual user interfaces where the
poses and movements of body parts need to be deter-
mined. Most previous solutions to this problem are
based on intensity images and, as a result, suffer from
a host of problems including sensitivity to background
clutter and lighting variations. QOur approach avoids
these pitfalls by using stereo depth data together with
a simple human torso model to create a head tracking
system that is both fast and robust. We use stereo da-
ta to derive a depth model of the background which is
then employed to provide accurate foreground segmen-
tation. We then use directed local edge detectors on
the foreground to find occluding edges which are used
as features to fit to a torso model. Once we have the
model parameters, the location and orientation of the
head can be easily estimated. A useful side effect from
using stereo data is the ability to track head movemen-
t through a room in three dimensions. Experimental
results on real image sequences are given.

1 Introduction

Human head tracking has been an area of active re-
search in computer vision for several years. Head po-
sition and orientation are important parameters for a
variety of applications, including telepresence [1], face
recognition [2], voice recognition, and perceptual user
interfaces [15]. Until recently, real-time stereo depth
data has been unavailable on the commercial market.
As a result, most previous approaches to head tracking
deal exclusively with intensity images [3], [4], [5], [6],
[7], [9]- These approaches are notoriously sensitive to
environmental factors that affect intensity values such
as changes in illumination, shadowing, or background
clutter. Stereo depth calculations, however, do not
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encounter these problems. This observation, coupled
with recent advances in stereo hardware which allow
us to gather depth data in real time [10], suggests a
new approach to the head tracking problem.

There has been very little work done on head track-
ing using stereo. Some systems ( [11],[8] ) use stereo
but still rely heavily on skin-tone pixel extraction, an
intensity-based measure subject to all of the aforemen-
tioned problems. One approach ([14]) uses stereo data
only but their complicated models prevent tracking of
rapid movements and require the user to move slow-
ly. In addition, this algorithm also requires a manual
initialization step.

Our approach is thus to use stereo data to perform
a more accurate foreground segmentation. We then
fit a simple torso model to the foreground, looking
specifically for the occluding edges of the shoulders.
Because the model is so simple, we can perform the
fit to each frame separately without having to use tra-
ditional tracking techniques to limit the search space.
This means that our tracker will not get confused as
easily by rapid movements or temporary occlusions.
Another important benefit from using stereo depth da-
ta is that, once we find the head in the depth image,
if we know the cameras’ focal lengths and baselines,
we can determine its position in 3D coordinates.

The paper is organized as follows. Section 2 will
discuss the algorithm for segmentation in detail. Sec-
tion 3 will describe our torso model and its parame-
ters, while Section 4 will discuss how we acquire that
model in each frame. Section 5 presents our head lo-
calization algorithm. Our results and conclusions will
be presented in Sections 6 and 7, respectively.

2 Segmentation

Our system begins with a segmentation of the hu-
man figure in the foreground of our image sequence.
Conventional approaches using intensity images [7]
create a Gaussian model of the intensity over a cer-
tain interval of time of each pixel in the background
and then determine whether a pixel is part of the fore-



ground based on its distance from the background in
the chosen color space. This method has two impor-
tant limitations. First, it is extremely sensitive to
variations in lighting conditions. For example, if the
lighting suddenly changes, the background model is no
longer valid and the resulting segmentation is incorrec-
t. Similarly, the effects of shadows are very difficult to
handle. If the foreground figure casts a shadow, the
darkened region could differ enough from the back-
ground to be classified as foreground. In addition, if
the foreground figure happens to be similar in color to
the background, it will be classified as background.

2.1 TUsing Depth Data

The use of stereo eliminates the aforementioned
problems. With depth images, we proceed as before,
modeling each background pixel as a Gaussian with a
mean p and a standard deviation ¢. This time, howev-
er, we build the model with depth instead of intensity
values. Closely following the work of [12], once we
build a depth model of the background, we can iden-
tify the foreground as any region where the depth is
sufficiently closer to the camera than the background.
This is much more physically intuitive than the inten-
sity segmentation and more accurate as well. Because
the nature of the stereo correlation calculation makes
it insensitive to color, shadows, or lighting variations,
we do not have to worry about the previous problems.

The segmentation, however, is not quite this sim-
ple. Stereo matching is extremely sensitive to image
texture. In our case, the correlation-based stereo sys-
tem has a great deal of difficulty operating in regions
where there is little texture. For example, consider a
blank wall. A stereo system attempting to correlate
pixels in such an untextured region will have a difficult
time finding the correct matches as all pixels look a-
like. The result is an area of incorrect matches yielding
disparities more or less randomly distributed through-
out a range dependent on the size of the correlation
window. This noise, depicted in Figure 1 is neither
Gaussian nor white, making it very difficult to model.
Unfortunately, this adversely affects our segmentation
as we cannot effectively model the background in re-
gions without adequate texture. We can, however,
identify those background pixels that are unreliable
with a simple test of our model’s standard deviation:
if o;; > B where (3 is a user-defined threshold (we used
B = 2). To combat this problem in untextured region-
s, we’ve devised our own segmentation scheme, closely
related to [12] but with an important additional vali-
dation step.

Figure 1: TOP: Sample input image from camer-
a. White square highlights region with little texture.
MIDDLE: Disparity image from the Digiclops™™
Stereo System from Point Grey Research, Inc. Note
noise in the highlighted region. BOTTOM LEFT: Re-
construction of physical surface based on disparity val-
ues in highlighted region (negative z axis trends away
from camera). BOTTOM RIGHT: Reconstruction of
physical surface based on region centered inside of the
human figure in the middle.



2.2 Surface Validation Segmentation

Once we’ve modeled the background, we face the
problem of picking out the foreground in a new
disparity! image DI. In the case where a pixel of the
foreground DI;; is in front of a reliable background
pixel (o;; < beta), we've demonstrated that the seg-
mentation is simple. All we must say is that a pix-
el is part of the foreground if the disparity value at
that point is in front of the mean background by more
than a standard deviation. When we are dealing with
an unreliable background pixel (o;; > beta), things
get much more complicated. In these cases, since p;;
is not a reliable representation of depth, we cannot
know based only on the value of DI;; whether that
pixel is in front of the background or not. Here we
make an important assumption: the foreground figure
must consist of a smooth blob of pixels with similar
disparity values. In other words, it should be distin-
guishable from untextured background in that its dis-
parity values suggest a surface that is smooth and re-
alistic (Figure 1, (bottom right)), not noisy and spiked
like the one in Figure 1 (bottom left). Assuming we
can identify all regions in an image that can be con-
sidered smooth physical surfaces, segmentation of the
foreground is as simple as identifying all such surface
regions that occur in front of the background. To find
these surfaces, we use a modified connected compo-
nents algorithm as follows:

1. consider DI to be a graph G where every vertex
Gj corresponds to a pixel DI;;

2. for each vertex G; connect it to its four neigh-
bors if and only if 37 . |Gij — Gu| <t where
Nj; is the 4-neighborhood of vertex G;j and t is
a user-defined threshold. Since neighboring dis-
parity values in untextured regions differ by large
amounts, there is a great deal of latitude in choos-
ing this threshold.

3. connected components larger than a nominal size
are accepted as surfaces and all other pixels are
ignored. The size cutoff is also relatively easy
to choose and is based on the assumption that
the human figure will take up at least 10% of the
image.

2.3 Segmentation Algorithm
Thus, our segmentation algorithm is:

1. using 20-30 images, model the background using
a Gaussian [, o] for each pixel

Tn the rest of the paper, we refer to disparity images ob-
tained using Digiclops; these are the depth images used in our
experiments.
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Figure 2: Tllustration of segmentation: (a) One of
the images in the input sequence of background im-
ages. (b) Disparity map output from Digiclops for
this image. (c) Illustration of reliable (white) back-
ground pixels based on standard deviation of back-
ground model. (d) New, test image for foreground seg-
mentation. (e) Results from surface validation. Sur-
faces shown (all regions except black) passed the val-
idation requirement. (f) Final result of segmentation.

2. based on the values for standard deviation, de-
termine unreliable background models by looking
for pixels with ¢ > B where (8 is a user-defined
threshold (we used 8 = 2)

3. for each subsequent disparity image DI, calculate
the areas considered to be physical surfaces

4. a surface pixel DI}; is classified as foreground if

(a) the background is reliable at [i,j] and
foj > i + 0y
(b) the background is unreliable at [z, j]
5. finally, to eliminate all remaining noise, we run a

binary connected components algorithm and ex-
tract the largest component.



We’ve already looked at the first case in step 4, but
the second deserves a bit of explanation. When we
classify the background as unreliable, we are implicitly
assuming that it is located in an untextured region.
This is a safe assumption as it is generally only in
those regions that the disparity value would fluctuate
so much from frame to frame. As a result, the data
in this region do not correspond to a physical surface
and would not aggregate into a connected component
large enough to classify as a surface. So, if we see
a surface pixel where we expect to find an unreliable
background pixel, we know that it must be part of the
new foreground. Figure 2 illustrates these concepts.

3 Torso Model

Once we have an accurate segmentation, we look
to fit a simple torso model to the foreground figure.
The model is based on the assumption that the fig-
ure is upright or leaning slightly to one side. Given
this, we notice that the occluding edges of the shoul-
ders, heretofore referred to as the mantle, are strong
cues that vary very little with respect to the motion
of an upright figure. Thus our torso model consists
only of five parameters, two for the straight line that
captures the general lean of the figure and three for
the quadratic that traces the outline of the mantle.
Figure 3 shows the model and its application to a re-
al image. We loosely interpret the intersection of the
lean and the mantle as being the neck point. This will
be useful later as we’re looking to localize the head.

4 Model Acquisition

Because we have such a simple model, it is relative-
ly easy to acquire. Given the segmented foreground
figure as a binary image, we extract the figure’s lean
in the following way:

1. for each row of the binary image, calculate the
median of the column values of the foreground
pixels

2. using a Singular Value Decomposition line fit, find
the best-fit line to the median values for each row.
That line is the lean.

We use medians because they are less sensitive to out-
liers like waving arms. Since the width of a typical
arm is far less than the width of a body, this works
quite well as long as the lean angle is not too large.
Figure 4 depicts an example of the lean acquisition.
Once we have the body lean, we can start acqui-
sition of the mantle. As we mentioned before, the
strongest cues are the occluding edges of the shoulders
on either side of the head. To find these we employ

Lean (2 params)

Mantle (3 params)

Figure 3: TOP: Illustration of simple torso model.
BOTTOM: Application of torso model to image.

Figure 4: Using the medians of the rows of the fore-
ground figure, we can extract the lean with an SVD
line fit.
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Figure 5: Example of a directed local edge detector.
The detail of the figure shows the slices along which
the image gradient is calculated. The gray dots rep-
resent occluding edge points found by the detector.

directed local edge detectors similar to those used in
[13]. We orient these detectors perpendicular to the
lean and look for edges by thresholding the image gra-
dient along slices perpendicular to the detector’s ori-
entation (parallel to the lean). Figure 5 displays an
example of such an edge detector.

To place these detectors in the best position, we use
the depth data of the points along the lean to give us
an estimate of how far the figure is from the camera.
Based on this information, we can determine where, in
image coordinates, to place the edge detectors. More
specifically, we can decide where in 3D space we’d like
to place the edge detectors. Then, using the focal
lengths and baselines of the stereo cameras, we can
determine where, in image coordinates, those would
fall. For example, if the figure is close to the camera,
we’re going to look for edges along a much longer line
than if it is further away. Figure 6 shows an illustra-
tion of these concepts. We use the assumption that
the typical head is .2 meters wide and that the typical
mantle is .4 meters across.

We place a series of these local edge detectors up
and down the image perpendicular to the body lean
and keep a running tally of how many potential edge
points we find. After searching the length of the body
lean line, we select the pair of trackers that yield
the most edge points and, using least squares, fit a
quadratic to those points. That quadratic is the man-
tle and represents the final three parameters of our
model.

Figure 6: This image shows the lean, the mantle, and a
few examples of the placement of the local edge detec-
tors (gray rectangles). Also, the light grey area above
the mantle line represents points classified as being
part of the head. The ‘x’ represents the centroid (in
image coordinates) of those head points.

5 Head Localization

Once we’ve acquired a model, we calculate the in-
tersection of the mantle and the lean, which we inter-
pret as the neck. We then look radially out from the
neck at points in the foreground that are:

e ‘above’ the mantle

e within a reasonable distance (.2 meters) in world
coordinates from the neck (remember we can do
this because we are working with 3D data)

After identifying such points, we calculate their cen-
troid and make the assumption that, regardless of tilt,
this point will represent the center of the head. We can
now determine the orientation of the head simply by
calculating the angle made by the line containing the
head’s centroid and the neck point. We assume that
the distance between those two points is half of the
height of the head and can easily draw a box around
it (Figure 6). Also, since we’re using stereo, once we
know the centroid of the head region we can easily
figure out its position in 3D.

6 Results

Figures 7, 8 and 9 illustrate the results of our track-
ing scheme. Each sequence features cluttered back-
grounds and rapid head movements that would be
likely to confuse a tracker that relied on accurate pre-
dictions based on past motion. Plotted on each image
is our acquired torso model as well as the orientation
of the head. Figure 8 especially shows the tracker’s a-
bility to work even in the presence of waving arms and



+ HEAD POSITION
% CAMERA
08
06
0.4 *
okt
CAMERA
02
/ Ea
4
F*
0 i
L+

L L L L L L ,
0 05 1 15 2 25 3

Figure 10: Bird’s eye view of head movement through
room in sequence from Figure 7. Both axes are in
meters.

image clutter. It also shows one of the failure modes
of the system. When the assumption that the figure
more or less faces the camera is violated, the shoulder
cues are not always strong enough to lead us to the
correct configuration of the model. Fortunately, since
our next step is entirely independent of the previous
one, we are not confused for long and reacquire the fig-
ure soon after. Similarly, in Figure 9 the tracker gets
confused when the figure’s arms occlude the head and
shoulders. As soon as the occlusion ends, however,
the tracker immediately reaquires its target. Figure
10 shows one of the important side effects from using
stereo. Since we are using stereo and we know the
cameras’ intrinsic and extrinsic parameters, once we
find where the head is located in image coordinates,
we can easily turn that into a 3D point. As a result,
we can track the movement of the head throughout a
room in 3D.

6.1 Performance

This system is run using a resolution of 320x240
pixels and the processing time per frame is approxi-
mately one second on a dual Pentium II 350 MHz.

7 Conclusion

What we have shown is a new approach to head
tracking taking advantage of the segmentation accu-
racy real-time stereo affords. We've created a sim-
ple torso model that is quick to acquire and does not
require accurate predictions between frames to work.
As a result, we can ignore the common assumption
of small interframe motions as well as the problems
generated by occlusions. We use this system to track
heads in 3D throughout a room.

7.1 Future Work

We hope to use this algorithm in several ways. For
one, this is an important complement to a smart room
where knowing the 3D position of a user’s head is a
way to steer a microphone array to listen in that di-
rection. We would also like to use it as a first step in
the bootstrapping of a more complicated articulated
motion tracking system that can perform human ges-
ture recognition. In addition, work is underway to use
this system to provide real-time 3D head coordinates
as an input to a face recognition algorithm similar to
the one in [2].

As for extensions of the algorithm itself, a relatively
easy one would be to track multiple heads in an image.
This is a simple matter of identifying all of the blob-
s in the foreground and acquiring a torso model for
each. Another extension under consideration is to ad-
d a very simple prediction step that would reduce the
computation time to acquire a model, but not sacrifice
the robustness of our ‘one image at a time’ system.
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